کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6328374 | 1619772 | 2015 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea
ترجمه فارسی عنوان
توسعه پروتکل زود هنگام برای پیش بینی غلظت کلروفیل با استفاده از مدل های یادگیری ماشین در مخازن آب های زیرزمینی و کوهستانی، کره
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم محیط زیست
شیمی زیست محیطی
چکیده انگلیسی
Chlorophyll-a (Chl-a) is a direct indicator used to evaluate the ecological state of a waterbody, such as algal blooms that degrade the water quality in lakes, reservoirs and estuaries. In this study, artificial neural network (ANN) and support vector machine (SVM) were used to predict Chl-a concentration for the early warning in the Juam Reservoir and Yeongsan Reservoir, which are located in an upstream region (freshwater reservoir) and downstream region (estuarine reservoir), respectively. Weekly water quality data and meteorological data for a 7-year period were used to train and validate both the ANN and SVM models. The Latin-hypercube one-factor-at-a-time (LH-OAT) method and a pattern search algorithm were applied to perform sensitivity analyses for the input variables and to optimize the parameters of the two models, respectively. Results revealed that the two models well-reproduced the temporal variation of Chl-a based on the weekly input variables. In particular, the SVM model showed better performance than the ANN model, displaying a higher prediction accuracy in the validation step. The Williams-Kloot test and sensitivity analysis demonstrated that the SVM model was superior for predicting Chl-a in terms of prediction accuracy and description of the cause-and-effect relationship between Chl-a concentration and environmental variables in both the Juam Reservoir and Yeongsan Reservoir. Furthermore, a 7-day interval was determined as an efficient early warning interval in the two reservoirs. As such, this study suggested an effective early-warning prediction method for Chl-a concentration and improved the eutrophication management scheme for reservoirs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Science of The Total Environment - Volume 502, 1 January 2015, Pages 31-41
Journal: Science of The Total Environment - Volume 502, 1 January 2015, Pages 31-41
نویسندگان
Yongeun Park, Kyung Hwa Cho, Jihwan Park, Sung Min Cha, Joon Ha Kim,