کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
633309 1456029 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mechanical reliability of geometrically imperfect tubular oxygen transport membranes
ترجمه فارسی عنوان
غلظت های انتقال اکسیژن سلولی ناقص از نظر هندسی مکانیکی
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی تصفیه و جداسازی
چکیده انگلیسی
Mixed ionic and electronic conductors have potential applications as oxygen transport membranes. Realization of the technology is challenged by mechanical reliability of the components which are subjected to stresses arising from oxygen stoichiometry gradients and external overpressure during operation. This paper investigates numerically the failure risk of tubular oxygen transport membranes under industrial operating conditions using finite element modeling and Weibull strength analysis. The effects of component manufacturing defects on fracture probability are elucidated by explicit modeling of imperfections in the tubular membrane geometry. A supported membrane made of dense and porous Zr-doped-BSCF is studied as an illustrative example. It is shown that stresses induced by oxygen stoichiometry gradients relax over time due to creep and external pressure is the dominating source of stress in the long term. Therefore, creep has no adverse effect for geometrically perfect membranes. For geometrically imperfect membranes, curl and eccentricity are found to have insignificant influence on fracture risk while ovality is identified as the most critical geometric imperfection. Under the influence of external pressure, ovality may lead to dramatic stress increase and flattening of oval cross sections. Oval membranes can fail in the long term even though the instantaneous fracture risk is tolerable. Based on industrial relevant conditions, the requirements to the material creep rate and component quality (in terms of specification of tolerable deviation from perfect tubular shape) that allows fail-safe operation are deduced.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Membrane Science - Volume 470, 15 November 2014, Pages 80-89
نویسندگان
, , , ,