کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
633557 | 1456038 | 2014 | 8 صفحه PDF | دانلود رایگان |

• State-of-the-art hydrogen permeation at intermediate temperatures.
• Mo-substitution significantly enhances n-type conductivity and H2 flux.
• Good agreement with predicted fluxes based on electrical characterization.
Hydrogen permeation in 30% Mo-substituted lanthanum tungsten oxide membranes, La27Mo1.5W3.5O55.5 (LWMo), has been measured as a function of temperature, hydrogen partial pressure gradient, and water vapor pressure in the sweep gas. Transport of hydrogen by means of ambipolar proton–electron conductivity and – with wet sweep gas – water splitting contributes to the measured hydrogen content in the permeate. At 700 °C under dry sweep conditions, the H2 permeability in LWMo was 6×10−46×10−4 mL min−1 cm-1, which is significantly higher than that for state-of-the-art SrCeO3-based membranes. Proton conductivity was identified as rate limiting for ambipolar bulk transport across the membrane. On these bases it is evident that Mo-substitution is a successful doping strategy to increase the n-type conductivity and H2 permeability compared to nominally unsubstituted lanthanum tungsten oxide. A steady-state model based on the Wagner transport theory with partial conductivities as input parameters predicted H2 permeabilities in good agreement with the measured data. LWMo is a highly competitive mixed proton–electron conducting oxide for hydrogen transport membrane applications provided that long term stability can be ensured.
Figure optionsDownload high-quality image (179 K)Download as PowerPoint slide
Journal: Journal of Membrane Science - Volume 461, 1 July 2014, Pages 81–88