کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6339390 1620379 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Characteristics of trace metals in fine (PM2.5) and inhalable (PM10) particles and its health risk assessment along with in-silico approach in indoor environment of India
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علم هواشناسی
پیش نمایش صفحه اول مقاله
Characteristics of trace metals in fine (PM2.5) and inhalable (PM10) particles and its health risk assessment along with in-silico approach in indoor environment of India
چکیده انگلیسی
Indoor concentrations of fine (PM2.5: aerodynamic diameter ≤ 2.5) and inhalable (PM10: aerodynamic diameter ≤ 10 μm) particles and its associated toxic metals are of concern now-a-days due to its effects on human health and environment. PM10 and PM2.5 samples were collected from indoor microenvironments on glass fiber and PTFE filter paper using low volume air sampler in Pune. The average concentration of PM2.5 and PM10 were 89.7 ± 43.2 μg m−3 and 138.2 ± 68.2 μg m−3 at urban site while it was 197.5 ± 84.3 and 287 ± 92 μg m−3 at rural site. Trace metals such as Cd, Co, Cr, Cu, Fe, Mn, Pb, Sb and Zn in particulate matter were estimated by ICP-AES. Concentrations of crustal metals were found to be higher than the carcinogenic metals in both the microenvironments. On the contrary the soluble and bio-availability fraction of carcinogenic metals were found higher thus it may cause the higher risk to human health. Therefore, cancer risk assessment of carcinogenic metals; Cr, Ni and Cd was calculated. Among the carcinogenic metals, Ni showed highest cancer risk in indoor PM. The higher cancer risk assessment of Ni has been supported by In-silico study which suggested that Ni actively formed co-ordination complex with histone proteins (i.e. H3-Ni/H4-Ni) by maintaining strong hydrogen bonding interactions with Asp and Glu residues of nucleosomal proteins. Present In-silico study of Ni-histone complexes will help to emphasize the possible role of Asp and Glu residues in DNA methylation, deacetylation and ubiquitinations of nucleosomal proteins. Hence, this study could pave the way to understand the structural consequence of Ni in nucleosomal proteins and its impact on epigenetic changes which ultimately cause lung and nasal cancer.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Atmospheric Environment - Volume 92, August 2014, Pages 384-393
نویسندگان
, , , ,