کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6344594 | 1620892 | 2016 | 36 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A machine learning approach to geochemical mapping
ترجمه فارسی عنوان
یک روش یادگیری ماشین برای نقشه برداری ژئوشیمیایی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
زمین شناسی اقتصادی
چکیده انگلیسی
Through stratified 10-fold cross validation we find the accuracy of quantile regression forests in predicting soil geochemistry in south west England to be a general improvement over that offered by ordinary kriging. Concentrations of immobile elements whose distributions are most tightly controlled by bedrock lithology are predicted with the greatest accuracy (e.g. Al with a cross-validated R2 of 0.79), while concentrations of more mobile elements prove harder to predict. In addition to providing a high level of prediction accuracy, models built on high resolution auxiliary variables allow for informative, process based, interpretations to be made. In conclusion, this study has highlighted the ability to map and understand the surface environment with greater accuracy and detail than previously possible by combining information from multiple datasets. As the quality and coverage of remote sensing and geophysical surveys continue to improve, machine learning methods will provide a means to interpret the otherwise-uninterpretable.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Geochemical Exploration - Volume 167, August 2016, Pages 49-61
Journal: Journal of Geochemical Exploration - Volume 167, August 2016, Pages 49-61
نویسندگان
Charlie Kirkwood, Mark Cave, David Beamish, Stephen Grebby, Antonio Ferreira,