کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6345756 | 1621229 | 2015 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The potential of 2D Kalman filtering for soil moisture data assimilation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
کامپیوتر در علوم زمین
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We examine the potential for parameterizing a two-dimensional (2D) land data assimilation system using spatial error auto-correlation statistics gleaned from a triple collocation analysis and the triplet of: (1) active microwave-, (2) passive microwave- and (3) land surface model-based surface soil moisture products. Results demonstrate that, while considerable spatial error auto-correlation exists in the errors for all three products, the inclusion of this information into a 2D assimilation system does not significantly improve the performance of the system relative to a one-dimensional (1D) baseline. This result is explained via an analytical evaluation of the impact of spatial error auto-correlation on the steady-state Kalman gain, which reveals that 2D filtering requires the existence of large auto-correlation differences (between the assimilation model and the assimilated observations) in order to enhance the analysis relative to a 1D filtering baseline. As a result, large error auto-correlations alone (in both the model or observations) are not sufficient to motivate the application of a 2D land assimilation system. These results have important consequences for the development of land data assimilation systems designed to ingest satellite derived surface soil moisture products for water resource and climate applications.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Remote Sensing of Environment - Volume 171, 15 December 2015, Pages 137-148
Journal: Remote Sensing of Environment - Volume 171, 15 December 2015, Pages 137-148
نویسندگان
Alexander Gruber, Wade Crow, Wouter Dorigo, Wolfgang Wagner,