کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6346412 | 1621246 | 2014 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A satellite-based geographically weighted regression model for regional PM2.5 estimation over the Pearl River Delta region in China
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
کامپیوتر در علوم زمین
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
To estimate the daily concentration of ground-level PM2.5 coincident to satellite overpass at regional scale, a satellite-based geographically weighted regression (GWR) model was developed. The model enhances PM2.5 estimation accuracy by considering spatial variation and nonstationarity that might introduce significant biases into PM2.5 estimation. The model was evaluated and validated against the PM2.5 data collected over the Pearl River Delta (PRD) region, China for the period of May 2012 to September 2013. The evaluation evidenced that, with meteorological parameters assimilated, the GWR model is able to explain 73.8% of the variability in ground-level PM2.5 concentration, a better performance than the two conventional statistical models (a general linear regression model Model-I, 56.4% and a semi-empirical model Model-II, 52.6%, respectively). The vertical correction on satellite-derived AOD and relative humidity significantly improve the AOD-PM2.5 correlative relationship. The findings from the study demonstrated the great potential and value of the GWR model for regional PM2.5 estimation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Remote Sensing of Environment - Volume 154, November 2014, Pages 1-7
Journal: Remote Sensing of Environment - Volume 154, November 2014, Pages 1-7
نویسندگان
Weize Song, Haifeng Jia, Jingfeng Huang, Yiyue Zhang,