کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6351500 | 1622555 | 2016 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A cloud model-based approach for water quality assessment
ترجمه فارسی عنوان
یک مدل مبتنی بر ابر برای ارزیابی کیفیت آب
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
روند سلسله مراتب تحلیلی، مدل ابر فازی آنتروپی اطلاعات، تصمیم گیری چند معیاره، تصادفی بودن،
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم محیط زیست
بهداشت، سم شناسی و جهش زایی
چکیده انگلیسی
Water quality assessment entails essentially a multi-criteria decision-making process accounting for qualitative and quantitative uncertainties and their transformation. Considering uncertainties of randomness and fuzziness in water quality evaluation, a cloud model-based assessment approach is proposed. The cognitive cloud model, derived from information science, can realize the transformation between qualitative concept and quantitative data, based on probability and statistics and fuzzy set theory. When applying the cloud model to practical assessment, three technical issues are considered before the development of a complete cloud model-based approach: (1) bilateral boundary formula with nonlinear boundary regression for parameter estimation, (2) hybrid entropy-analytic hierarchy process technique for calculation of weights, and (3) mean of repeated simulations for determining the degree of final certainty. The cloud model-based approach is tested by evaluating the eutrophication status of 12 typical lakes and reservoirs in China and comparing with other four methods, which are Scoring Index method, Variable Fuzzy Sets method, Hybrid Fuzzy and Optimal model, and Neural Networks method. The proposed approach yields information concerning membership for each water quality status which leads to the final status. The approach is found to be representative of other alternative methods and accurate.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Environmental Research - Volume 148, July 2016, Pages 24-35
Journal: Environmental Research - Volume 148, July 2016, Pages 24-35
نویسندگان
Dong Wang, Dengfeng Liu, Hao Ding, Vijay P. Singh, Yuankun Wang, Xiankui Zeng, Jichun Wu, Lachun Wang,