کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6354068 1622638 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Verifying the performance of artificial neural network and multiple linear regression in predicting the mean seasonal municipal solid waste generation rate: A case study of Fars province, Iran
ترجمه فارسی عنوان
بررسی عملکرد شبکه های عصبی مصنوعی و رگرسیون خطی چندگانه در پیش بینی میانگین تولید فاضلاب جامد شهری فصلی: مطالعه موردی استان فارس
کلمات کلیدی
شبکه های عصبی مصنوعی، تولید زباله های جامد شهری فصلی، استان فارس، رگرسیون خطی چندگانه،
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات مهندسی ژئوتکنیک و زمین شناسی مهندسی
چکیده انگلیسی
Predicting the mass of solid waste generation plays an important role in integrated solid waste management plans. In this study, the performance of two predictive models, Artificial Neural Network (ANN) and Multiple Linear Regression (MLR) was verified to predict mean Seasonal Municipal Solid Waste Generation (SMSWG) rate. The accuracy of the proposed models is illustrated through a case study of 20 cities located in Fars Province, Iran. Four performance measures, MAE, MAPE, RMSE and R were used to evaluate the performance of these models. The MLR, as a conventional model, showed poor prediction performance. On the other hand, the results indicated that the ANN model, as a non-linear model, has a higher predictive accuracy when it comes to prediction of the mean SMSWG rate. As a result, in order to develop a more cost-effective strategy for waste management in the future, the ANN model could be used to predict the mean SMSWG rate.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Waste Management - Volume 48, February 2016, Pages 14-23
نویسندگان
, ,