کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6387209 | 1627304 | 2013 | 16 صفحه PDF | دانلود رایگان |

A nutrient-to-fish-model with an explicit two-way interaction between a biogeochemical model of the lower food web and a fish model component is presented for the example of the Baltic Sea, demonstrating the feasibility of a consistent coupling of the upper and lower parts of the food web in a Eulerian model system.In the Baltic Sea, the fish stock is dominated by two prey species (sprat and herring) and one predator (cod). The dynamics of the fish model is driven by size (mass-class) dependent predator-prey interactions while the interaction between the biogeochemical and Fish model component is established through feeding of prey fish on zooplankton and recycling of fish biomass to nutrients and detritus.The fish model component is coupled to an advanced three dimensional biogeochemical model (ERGOM, Neumann et al., 2002). A horizontally explicit representation of fish requires the implementation of fish behavior. As a first step, we propose an algorithm to stimulate fish migration by letting the fish follow the food. Moreover, fish species are guided to their respective spawning areas. Results of first three-dimensional simulations are presented with emphasis on the transport of matter by moving fish. The spawning areas of cod and sprat are in the deep basins, which are not well reached by advective transport. Hence the deposition of matter in these areas by spawning fish could play some role in the distribution of matter.The approach is not limited to applications for the Baltic and the model can be transferred also to other systems.
Journal: Journal of Marine Systems - Volume 125, September 2013, Pages 61-76