کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6406840 | 1628801 | 2015 | 7 صفحه PDF | دانلود رایگان |
- Chlorophyll fluorescence, stomatal control and SPAD decreased as salinity increased.
- Electrolyte leakage increased as salinity increased.
- Grafted trees had a more pronounced response to salinity.
- Olinda Valencia scions reduce rootstock tolerance to salinity.
Subtropical and tropical climates are becoming more vulnerable to drought and salinity problems. Of the crops produced in these climates, citrus is especially sensitive to increasing salinity. In times of water scarcity and periodic drought alternative water sources that may be lower in quality may be required for irrigation, leading to reduced yield unless a mechanism of increasing salinity tolerance is found. The salinity tolerance of citrus rootstocks differs depending on species and cultivar in their ability to exclude or sequester toxic ions. Identifying rootstocks that are more salt tolerant is important to citrus production in susceptible areas. 'Olinda' Valencia trees budded to three rootstocks (sour orange [SO], C22, and C146) and the ungrafted rootstocks were subjected to 6 months of saline irrigation. Simulated brackish water at 1, 3, 5, and 10Â dSÂ mâ1 along with a 0Â dSÂ mâ1 control were used to irrigate trees over the course of the study. Throughout this time period chlorophyll fluorescence, stomatal conductance, electrolyte leakage, and SPAD were measured to identify how trees responded to different levels of salinity stress. Chlorophyll fluorescence, stomatal control, and SPAD decreased with increased salinity, while electrolyte leakage increased. These responses were more pronounced in grafted trees than ungrafted trees. C22 and C146 rootstocks showed more tolerance to increases in salinity than the SO rootstocks. The 'Olinda' Valencia scion reduces rootstock tolerance to salinity, however, trees grafted to the C22 and C146 rootstocks showed more salinity tolerance than those grafted to SO rootstocks. This study emphasizes that both rootstock and scion should be considered when selecting trees for saline conditions.
Journal: Scientia Horticulturae - Volume 197, 14 December 2015, Pages 483-489