کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6415425 1630667 2015 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Sums and differences of correlated random sets
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Sums and differences of correlated random sets
چکیده انگلیسی

TextMany questions in additive number theory (Goldbach's conjecture, Fermat's Last Theorem, the Twin Primes conjecture) can be expressed in the language of sum and difference sets. As a typical pair contributes one sum and two differences, we expect |A−A|>|A+A||A−A|>|A+A| for finite sets A  . However, Martin and O'Bryant showed a positive proportion of subsets of {0,…,n}{0,…,n} are sum-dominant. We generalize previous work and study sums and differences of pairs of correlated   sets (A,B)(A,B) (a∈{0,…,n}a∈{0,…,n} is in A with probability p, and a goes in B   with probability ρ1ρ1 if a∈Aa∈A and probability ρ2ρ2 if a∉Aa∉A). If |A+B|>|(A−B)∪(B−A)||A+B|>|(A−B)∪(B−A)|, we call (A,B)(A,B) a sum-dominant  (p,ρ1,ρ2)(p,ρ1,ρ2)-pair  . We prove for any fixed ρ→=(p,ρ1,ρ2) in (0,1)3(0,1)3, (A,B)(A,B) is a sum-dominant (p,ρ1,ρ2)(p,ρ1,ρ2)-pair with positive probability, which approaches a limit P(ρ→). We investigate p decaying with n, generalizing results of Hegarty–Miller on phase transitions, and find the smallest sizes of MSTD pairs.VideoFor a video summary of this paper, please visit http://youtu.be/E8I-HuYXLF4.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 147, February 2015, Pages 44–68