کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6415641 1335747 2012 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Computing isomorphism numbers of F-crystals using the level torsions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Computing isomorphism numbers of F-crystals using the level torsions
چکیده انگلیسی

TextThe isomorphism number of an F-crystal (M,φ) over an algebraically closed field of positive characteristic is the smallest non-negative integer nM such that the nM-th level truncation of (M,φ) determines the isomorphism class of (M,φ). When (M,φ) is isoclinic, namely it has a unique Newton slope λ, we provide an efficiently computable upper bound for nM in terms of λ and the Hodge slopes of (M,φ). This is achieved by providing an upper bound for the level torsion of (M,φ) introduced by Vasiu. We also check that this upper bound is optimal for many families of isoclinic F-crystals that are of special interest (such as isoclinic F-crystals of K3 type).VideoFor a video summary of this paper, please click here or visit http://www.youtube.com/watch?v=gVObAZZ1DKE.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 132, Issue 12, December 2012, Pages 2817-2835
نویسندگان
,