کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6416963 | 1338363 | 2015 | 26 صفحه PDF | دانلود رایگان |

The synthesis of (discrete) Complexity Theory with Recursive Analysis provides a quantitative algorithmic foundation to calculations over real numbers, sequences, and functions by approximation up to prescribable absolute error 1/2n (roughly corresponding to n binary digits after the radix point). In this sense Friedman and Ko have shown the seemingly simple operators of maximization and integration 'complete' for the standard complexity classes NP and #P - even when restricted to smooth (=Câ) arguments. Analytic polynomial-time computable functions on the other hand are known to get mapped to polynomial-time computable functions: non-uniformly, that is, disregarding dependences other than on the output precision n.The present work investigates the uniform parameterized complexity of natural operators Î on subclasses of smooth functions: evaluation, pointwise addition and multiplication, (iterated) differentiation, integration, and maximization. We identify natural integer parameters k=k(f) which, when given as enrichment to approximations to the function argument f, permit to computably produce approximations to Î(f); and we explore the asymptotic worst-case running time sufficient and necessary for such computations in terms of the output precision n and said k.It turns out that Maurice Gevrey's 1918 classical hierarchy climbing from analytic to (just below) smooth functions provides for a quantitative gauge of the uniform computational complexity of maximization and integration that, non-uniformly, exhibits the phase transition from tractable (i.e. polynomial-time) to intractable (in the sense of NP-'hardness'). Our proof methods involve Hard Analysis, Approximation Theory, and an adaptation of Information-Based Complexity to the bit model.
Journal: Journal of Complexity - Volume 31, Issue 5, October 2015, Pages 689-714