کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6417767 1339305 2015 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On super fixed point property and super weak compactness of convex subsets in Banach spaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
On super fixed point property and super weak compactness of convex subsets in Banach spaces
چکیده انگلیسی

For a nonempty convex set C of a Banach space X, a self-mapping on C is said to a linear (respectively, affine) isometry if it is the restriction of a linear (respectively, affine) isometry defined on the whole space X. By means of super weakly compact set theory established in the recent years, in this paper, we first show that a nonempty closed bounded convex set of a Banach space has super fixed point property for affine (or, equivalently, linear) isometries if and only if it is super weakly compact; and the super fixed point property and the super weak compactness coincide on every closed bounded convex subset of a Banach space under equivalent renorming sense. With the application of Fabian-Montesinos-Zizler's renorming theorem, we finally show that every strongly super weakly compact generated Banach space can be renormed so that every weakly compact convex set has super fixed point property.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 428, Issue 2, 15 August 2015, Pages 1209-1224
نویسندگان
, , ,