کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6418007 1339319 2015 34 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Differentiation of the integral, Hardy spaces and Calderón-Zygmund operators in the product setting
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Differentiation of the integral, Hardy spaces and Calderón-Zygmund operators in the product setting
چکیده انگلیسی

This article concerns strong differentiation and operators on product Hardy spaces. We first show that an example, created by Papoulis, of a function on R2 whose integral is strongly differentiable almost everywhere, but the integral of its absolute value fails to be strongly differentiable on a set of positive measure, belongs to the product Hardy space H1(R×R). The methods that we develop enable us to present a relaxed version of Chang-Fefferman p-atoms with a lower number of required vanishing moments and no smoothness needed on the elementary particles. In analogy with the proof of this result, we show a generalization of a theorem of R. Fefferman which concludes Hp→Lp, 0

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 423, Issue 2, 15 March 2015, Pages 1480-1513
نویسندگان
,