کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6418162 1339322 2015 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dye's Theorem and Gleason's Theorem for AW⁎-algebras
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Dye's Theorem and Gleason's Theorem for AW⁎-algebras
چکیده انگلیسی

We prove that any map between projection lattices of AW⁎-algebras A and B, where A has no Type I2 direct summand, that preserves orthocomplementation and suprema of arbitrary elements, is a restriction of a normal Jordan ⁎-homomorphism between A and B. This allows us to generalize Dye's Theorem from von Neumann algebras to AW⁎-algebras. We show that Mackey-Gleason-Bunce-Wright Theorem can be extended to homogeneous AW⁎-algebras of Type I. The interplay between Dye's Theorem and Gleason's Theorem is shown. As an application we prove that Jordan ⁎-homomorphisms are commutatively determined. Another corollary says that Jordan parts of AW⁎-algebras can be reconstructed from posets of their abelian subalgebras.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 422, Issue 2, 15 February 2015, Pages 1103-1115
نویسندگان
,