کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6418162 | 1339322 | 2015 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Dye's Theorem and Gleason's Theorem for AWâ-algebras
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We prove that any map between projection lattices of AWâ-algebras A and B, where A has no Type I2 direct summand, that preserves orthocomplementation and suprema of arbitrary elements, is a restriction of a normal Jordan â-homomorphism between A and B. This allows us to generalize Dye's Theorem from von Neumann algebras to AWâ-algebras. We show that Mackey-Gleason-Bunce-Wright Theorem can be extended to homogeneous AWâ-algebras of Type I. The interplay between Dye's Theorem and Gleason's Theorem is shown. As an application we prove that Jordan â-homomorphisms are commutatively determined. Another corollary says that Jordan parts of AWâ-algebras can be reconstructed from posets of their abelian subalgebras.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 422, Issue 2, 15 February 2015, Pages 1103-1115
Journal: Journal of Mathematical Analysis and Applications - Volume 422, Issue 2, 15 February 2015, Pages 1103-1115
نویسندگان
Jan Hamhalter,