کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6418186 1339322 2015 31 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Computing the first eigenpair of the p-Laplacian in annuli
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Computing the first eigenpair of the p-Laplacian in annuli
چکیده انگلیسی

We propose a method for computing the first eigenpair of the Dirichlet p-Laplacian, p>1, in the annulus Ωa,b={x∈RN:a<|x|1. For each t∈(a,b), we use an inverse iteration method to solve two radial eigenvalue problems: one in the annulus Ωa,t, with the corresponding eigenvalue λ−(t) and boundary conditions u(a)=0=u′(t); and the other in the annulus Ωt,b, with the corresponding eigenvalue λ+(t) and boundary conditions u′(t)=0=u(b). Next, we adjust the parameter t using a matching procedure to make λ−(t) coincide with λ+(t), thereby obtaining the first eigenvalue λp. Hence, by a simple splicing argument, we obtain the positive, L∞-normalized, radial first eigenfunction up. The matching parameter is the maximum point ρ of up. In order to apply this method, we derive estimates for λ−(t) and λ+(t), and we prove that these functions are monotone and (locally Lipschitz) continuous. Moreover, we derive upper and lower estimates for the maximum point ρ, which we use in the matching procedure, and we also present a direct proof that up converges to the L∞-normalized distance function to the boundary as p→∞. We also present some numerical results obtained using this method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 422, Issue 2, 15 February 2015, Pages 1277-1307
نویسندگان
, , ,