کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6419455 1339409 2011 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On solutions to the Degasperis-Procesi equation
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
On solutions to the Degasperis-Procesi equation
چکیده انگلیسی

In this paper we consider a new integrable equation (the Degasperis-Procesi equation) derived recently by Degasperis and Procesi (1999) [3]. Analogous to the Camassa-Holm equation, this new equation admits blow-up phenomenon and infinite propagation speed. First, we give a proof for the blow-up criterion established by Zhou (2004) in [12]. Then, infinite propagation speed for the Degasperis-Procesi equation is proved in the following sense: the corresponding solution u(x,t) with compactly supported initial datum u0(x) does not have compact x-support any longer in its lifespan. Moreover, we show that for any fixed time t>0 in its lifespan, the corresponding solution u(x,t) behaves as: u(x,t)=L(t)e−x for x≫1, and u(x,t)=l(t)ex for x≪−1, with a strictly increasing function L(t)>0 and a strictly decreasing function l(t)<0 respectively.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 379, Issue 1, 1 July 2011, Pages 351-359
نویسندگان
,