کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6427771 1634725 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Can grain size sensitive flow lubricate faults during the initial stages of earthquake propagation?
ترجمه فارسی عنوان
آیا خطرات حساس جریان دانه را می توان در طی مراحل اولیه زلزله گسیل نمود؟
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم زمین و سیاره ای (عمومی)
چکیده انگلیسی


- We measure the strength of simulated carbonate gouges sheared at seismic rates.
- We analyse the deformed samples to identify the microscale deformation mechanisms.
- Grainsize sensitive flow occurs along frictionally heated, seismic slip surfaces.
- Modelled stress for nanoscale flow and measured shear strength values are similar.
- Superplastic nanoscale flow can weaken seismic faults without phase transformation.

Recent friction experiments carried out under upper crustal P-T conditions have shown that microstructures typical of high temperature creep develop in the slip zone of experimental faults. These mechanisms are more commonly thought to control aseismic viscous flow and shear zone strength in the lower crust/upper mantle. In this study, displacement-controlled experiments have been performed on carbonate gouges at seismic slip rates (1 m s−1), to investigate whether they may also control the frictional strength of seismic faults at the higher strain rates attained in the brittle crust. At relatively low displacements (<1 cm) and temperatures (≤100 °C), brittle fracturing and cataclasis produce shear localisation and grain size reduction in a thin slip zone (150 μm). With increasing displacement (up to 15 cm) and temperatures (T up to 600 °C), due to frictional heating, intracrystalline plasticity mechanisms start to accommodate intragranular strain in the slip zone, and play a key role in producing nanoscale subgrains (≤100 nm). With further displacement and temperature rise, the onset of weakening coincides with the formation in the slip zone of equiaxial, nanograin aggregates exhibiting polygonal grain boundaries, no shape or crystal preferred orientation and low dislocation densities, possibly due to high temperature (>900 °C) grain boundary sliding (GBS) deformation mechanisms. The observed micro-textures are strikingly similar to those predicted by theoretical studies, and those observed during experiments on metals and fine-grained carbonates, where superplastic behaviour has been inferred. To a first approximation, the measured drop in strength is in agreement with our flow stress calculations, suggesting that strain could be accommodated more efficiently by these mechanisms within the weaker bulk slip zone, rather than by frictional sliding along the main slip surfaces in the slip zone. Frictionally induced, grainsize-sensitive GBS deformation mechanisms can thus account for the self-lubrication and dynamic weakening of carbonate faults during earthquake propagation in nature.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Earth and Planetary Science Letters - Volume 431, 1 December 2015, Pages 48-58
نویسندگان
, , , , ,