کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6429431 1634765 2014 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Melting and subsolidus phase relations in peridotite and eclogite systems with reduced COH fluid at 3-16 GPa
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم زمین و سیاره ای (عمومی)
پیش نمایش صفحه اول مقاله
Melting and subsolidus phase relations in peridotite and eclogite systems with reduced COH fluid at 3-16 GPa
چکیده انگلیسی


- Peridotite and eclogite coexisting with reduced C-O-H fluid studied at 3-16 GPa and 1200-1600 °C.
- The double-capsule technique with fO2 control by Mo-MoO2 and Fe-FeO buffer was used.
- The solidus temperatures were higher (300-500 °C) than in the systems with H2O and CO2.
- The partial melt from peridotite and eclogite has basaltic composition.
- We argue that redox melting can be important melting process in the deep Earth's interior.

Melting phase relations of peridotite and eclogite coexisting with reduced C-O-H fluid have been studied at 3-16 GPa and 1200-1600 °C. In order to perform these experiments the double-capsule technique with fO2 control by outer Mo-MoO2 or Fe-FeO buffer capsule was designed and developed for multianvil experiments at pressures 3-21 GPa. Silicate phase assemblages resemble those in volatile-free lithologies, i.e. olivine/wadsleyite-orthopyroxene-clinopyroxene-garnet in peridotite and garnet-omphacite in eclogite. Melting was detected by the appearance of quenched crystals of pyroxene, feldspar and glassy silica. Estimated solidus temperatures for peridotite + C-O-H fluid with fO2=Fe-FeO are 1200 °C at 3 GPa and 1700 °C at 16 GPa. The solidus of the system with fO2=Mo-MoO2 was about 100 °C lower. Estimated solidus temperatures for eclogite + C-O-H fluid with fO2=Fe-FeO are 1100 °C at 3 GPa and 1600 °C at 16 GPa, and for eclogite at fO2=Mo-MoO2 solidus temperatures were 20-50 °C lower. These solidus temperatures are much higher (300-500 °C) than those for peridotite and eclogite systems with H2O and/or CO2, but are still 300-400 °C lower than the solidi of volatile-free peridotite and eclogite at studied pressures. The compositions of partial melt were estimated from mass-balance calculations: partial melts of peridotite have CaO-poor (6-9 wt.%) basaltic compositions with 44-47 wt.% SiO2 and 1.1-1.6 wt.% Na2O. Melts of eclogite contain more SiO2 (47-49 wt.%) and are enriched in CaO (9-15 wt.%), Na2O (9-14 wt.%), and K2O (1.3-2.2 wt.%). All runs contained graphite or diamond crystals along with porous carbon aggregate with micro-inclusions of silicates indicating that reduced fluid may dissolve significant amounts of silicate components. Analyses of carbon aggregates using a defocused electron microprobe beam reveal compositions similar to estimated partial melts. The diamonds formed from reduced C-O-H fluid may have natural analogues as polycrystalline diamonds. The oxygen fugacity in the Earth's mantle decreases with pressure from about fayalite-magnetite-quartz at shallow depths of 20-50 km to about iron-wustite at 250-300 km according to fO2 estimations from cratonic peridotite. We show significant increase of solidus temperatures in peridotite and eclogite coexisting with reduced CH4-H2O fluid relative to the systems with oxidized H2O-CO2 fluid. We emphasize that redox melting by change of oxidation state across a mantle section, a phase transition, or the lithosphere-asthenosphere boundary can be the dominant melting process in the deep Earth's interior.

135

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Earth and Planetary Science Letters - Volume 391, 1 April 2014, Pages 87-99
نویسندگان
, , ,