کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6453296 1418509 2017 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Feature ArticleImproving the ceria-mediated water and carbon dioxide splitting through the addition of chromium
ترجمه فارسی عنوان
ویژگی مقاله بهبود آب و دی اکسید کربن توسط سرایا از طریق افزودن کروم
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی کاتالیزور
چکیده انگلیسی


- Cr2O3/CeO2 catalysts were prepared by polymerized complex method and impregnation.
- Cr-doped CeO2 was produced with flame spray pyrolysis.
- Cr2O3 probably reduces to metallic chromium during reaction conditions.
- The addition of Cr2O3 significantly increased H2 and CO production rates.
- The H2O and CO2 splitting reactions need to be catalysed.

The solar thermochemical water and carbon dioxide splitting, mediated by ceria, has a great potential to produce “green” syngas. Chromium was added to ceria to improve the syngas production. Three preparation methods were applied, resulting in different morphologies allowing to investigate the role of chromium. The samples were characterized by X‐ray diffraction, Raman and X-ray spectroscopy, and electron microscopy. Materials made by polymerized-complex-method and dry-impregnation consisted of two crystal phases: ceria and chromia. In contrast, materials made by flame-spray pyrolysis exhibited a homogeneous Cr-doped ceria phase, and chromia was found only at a chromium-content higher than 25 mol%. The chromium-doped ceria released additional oxygen during the formation of CeCrO3 perovskite, which did not enhance hydrogen or carbon monoxide production. All chromia-containing samples exhibited improved oxygen exchange capacity, possibly due to a redox cycle of chromia itself, and significantly improved the activity of water and carbon dioxide splitting. Hydrogen production increased from 3.2 to 6.7 mL/g and the time to reach redox equilibrium was shorten from 41 to 3 min. The best hydrogen and carbon dioxide production rates were up to 20 and 500 times higher than pure ceria, respectively. The presence of chromium is therefore crucial as a catalyst, promoter, and oxygen storage enhancer. This work emphasises the importance of a catalysed re‐oxidation reaction and demonstrates that a metal oxide, becoming active in situ, can catalyse water and carbon dioxide splitting.

125

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Catalysis A: General - Volume 537, 5 May 2017, Pages 40-49
نویسندگان
, , , ,