کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6464908 1422946 2018 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Converting mesophilic upflow sludge blanket (UASB) reactors to thermophilic by applying axenic methanogenic culture bioaugmentation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Converting mesophilic upflow sludge blanket (UASB) reactors to thermophilic by applying axenic methanogenic culture bioaugmentation
چکیده انگلیسی


- Injection of axenic methanogens benefits temperature transition of UASB reactors.
- Exogenous hydrogenotrophic methanogen can be confined to pre-existing granules.
- Bioaugmentation promoted the growth of syntrophic acid oxidizers in granules.
- Bioaugmented reactor produced maximum 40% more methane than abiotic augmentation.

The application of thermophilic conditions in anaerobic digesters leads to higher methane production rates and better sanitation of the effluents compared to mesophilic operation. However, an increase in operational temperature is challenging due to the tremendous selective pressure imposed on the microbial consortium. The adaptation of microbial community to a new environment or condition can be accelerated by a process known as “bioaugmentation” or “microbial community manipulation”, during which exogenous microorganisms harbouring specific metabolic activities are introduced to the reactor. The aim of the current study was to rapidly convert the operational temperature of up-flow anaerobic sludge blanket (UASB) reactors from mesophilic to thermophilic conditions by applying microbial community manipulation techniques. Three different bioaugmentation strategies were compared and it was proven that the injection of axenic methanogenic culture was the most efficient approach leading to improved biomethanation process with 40% higher methane production rate compared to the control reactor. Microbial community analyses revealed that during bioaugmentation, the exogenous hydrogenotrophic methanogen could be encapsulated in granular structures and concomitantly promote the growth of syntrophic fatty acid oxidizing bacteria. The results derived from the current study indicated that microbial community manipulation is an efficient alternative method to speed up transition of UASB reactors from mesophilic to thermophilic conditions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemical Engineering Journal - Volume 332, 15 January 2018, Pages 508-516
نویسندگان
, , , , ,