کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
646491 1457158 2014 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Numerical modeling of flow through an industrial burner orifice
ترجمه فارسی عنوان
مدل سازی عددی جریان از طریق یک فریزر مشعل صنعتی
کلمات کلیدی
احتراق صنعتی، شبیه سازی فرآیند، تحلیل عددی، مشعل صنعتی، گاز طبیعی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی جریان سیال و فرایندهای انتقال
چکیده انگلیسی


• Numerical modeling of natural gas flow through an industrial burner was performed.
• Standard, RNG, Realizable k–ε, and Reynolds Stress Model (RSM) have been used.
• The considered models represent the experimental conditions.

This paper presents numerical modeling of a turbulent natural gas flow through a non-premixed industrial burner of a slab reheating furnace. The furnace is equipped with diffusion side swirl burners capable of utilizing natural gas or coke oven gas alternatively through the same nozzles. The study is focused on one of the burners of the preheating zone. Computational Fluid Dynamics simulation has been used to predict the burner orifice turbulent flow. Flow rate and pressure at burner upstream were validated by experimental measurements. The outcomes of the numerical modeling are analyzed for the different turbulence models in terms of pressure drop, velocity profiles, and orifice discharge coefficient. The standard, RNG, and Realizable k–ε models and Reynolds Stress Model (RSM) have been used. The main purpose of the numerical investigation is to determine the turbulence model that more consistently reproduces the experimental results of the flow through an industrial non-premixed burner orifice. The comparisons between simulations indicate that all the models tested satisfactorily and represent the experimental conditions. However, the Realizable k–ε model seems to be the most appropriate turbulence model, since it provides results that are quite similar to the RSM and RNG k–ε models, requiring only slightly more computational power than the standard k–ε model.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Thermal Engineering - Volume 67, Issues 1–2, June 2014, Pages 201–213
نویسندگان
, , , , , ,