کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6466364 1422963 2017 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Detailed kinetic modeling of chemical quenching processes of acetylene-rich gas at high temperature
ترجمه فارسی عنوان
مدلسازی جنبشی دقیق فرآیندهای خنک کننده شیمیایی گاز غنی از استیلن در دمای بالا
کلمات کلیدی
استیلن، خنک کردن شیمیایی، جنبشی دقیق، تشکیل دوده پلاسما حرارتی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
چکیده انگلیسی


- Introduced an integrated detailed kinetic mechanism for acetylene decomposition at high temperature.
- Revealed the general requirements in preserving acetylene during quenching processes.
- Discussed the co-production of acetylene and ethylene and energy re-utilization of chemical quenching method.
- Proposed a detailed propane-quenching optimization for pilot-plant acetylene production by plasma coal pyrolysis.

Quenching of acetylene-rich gas at high temperature is an essential step in most acetylene production processes. Different from traditional physical quenching methods (e.g., water spray), chemical quenching has the advantage of reusing the gas heat content and producing co-products while preventing acetylene from decomposing. In this work, a detailed kinetic mechanism was proposed to theoretically describe and reveal the chemical quenching process. Reactions of small hydrocarbons, PAHs growth and soot formation were taken into consideration to build the model, which was validated by reported data. Afterwards, an ideal PFR model was used to investigate the effects of different operating conditions, including temperature after quenching, quenching time, and quenching media. Furthermore, the proposed model was used to optimize the chemical quenching operation for a pilot-plant acetylene production process based on thermal plasma technique. The results showed that chemical quenching could effectively realize both energy re-utilization and ethylene co-production, while maintaining a satisfactory yield of acetylene.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemical Engineering Journal - Volume 315, 1 May 2017, Pages 324-334
نویسندگان
, , , , , ,