کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6466634 1422965 2017 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Comparison of Fenton, UV-Fenton and nano-Fe3O4 catalyzed UV-Fenton in degradation of phloroglucinol under neutral and alkaline conditions: Role of complexation of Fe3+ with hydroxyl group in phloroglucinol
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Comparison of Fenton, UV-Fenton and nano-Fe3O4 catalyzed UV-Fenton in degradation of phloroglucinol under neutral and alkaline conditions: Role of complexation of Fe3+ with hydroxyl group in phloroglucinol
چکیده انگلیسی


- Phloroglucinol was able to be efficiently degraded under initial pH from 7.0 to 9.0 by Fenton-based processes.
- Fenton, UV-Fenton and nano-Fe3O4 catalyzed UV-Fenton were compared.
- Fe(III)-phloroglucinol complex and significant pH decrease of reaction solution were observed.

Phloroglucinol degradation at initial pH from 7.0 to 9.0 has been investigated in Fenton, UV-Fenton and nano-Fe3O4 catalyzed UV-Fenton (Hetero-Fenton). Within the reaction time given in this study (not more than 4 h), 150 mg·L−1 phloroglucinol was completely removed, while there was some difference in TOC removal efficiency: about 90% for UV-Fenton, nearly 60% for Fenton and Hetero-Fenton. Increasing initial pH from 7.0 to 9.0, there was an obvious decline in the degradation rate. The average values of H2O2 utilization efficiency were 0.65 ± 0.01 for Fenton, 0.66 ± 0.09 for UV-Fenton, and 1.35 ± 0.15 for Hetero-Fenton, suggesting Hetero-Fenton required less H2O2 consumption. Solution pH could decrease to strongly acidic conditions of pH < 4.0 and the generation of organic acids including formic, acetic, oxalic, and maleic acids depended on the type of oxidation process. The spectrophotometric study showed phloroglucinol would complex with Fe(III) at pH 7.0 to form homogeneous aqueous solution which exhibited strong light absorption in the wavelength range of 400 nm to 600 nm. Therefore, formation of Fe(III)-phloroglucinol complex and pH decrease to strongly acidic condition played important roles in Fenton degradation under neutral and alkaline pH. The result of effect of pollutant content showed phloroglucinol at lower concentrations of 20 and 50 mg·L−1 could still be completely removed by all Fenton-based systems at pH 7.0, however, in Fenton with 20 mg·L−1 phloroglucinol, a significantly decreased degradation rate was observed due to the slowdown of pH drop and inhibited formation of Fe(III)-phloroglucinol complex.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemical Engineering Journal - Volume 313, 1 April 2017, Pages 938-945
نویسندگان
, , , , , ,