کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6468184 1423556 2017 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Electromagnetic enhanced ignition
ترجمه فارسی عنوان
احتراق افزایش یافته الکترومغناطیسی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
چکیده انگلیسی

Here, we investigate how EM radiation affects the thermal decomposition pathway in HMX. The experiment used an external heat source (CO2 laser) to rapidly heat the surface of HMX and observe the response upon application of EM energy that, on its own, is not enough power to induce heating or ignition. We hypothesize that charged intermediate decomposition species and free radicals in the gas phase interact strongly with EM energy, leading to plasma formation. These gas phase species form as a result of HMX sublimation and decomposition, and will act as “virtual antennas” and strongly couple to EM energy. The rapid absorption of EM energy during this coupling event is observed in the measured reflected power data. Ignition and plasma formation were monitored using both visible and IR photodiode probes, as well as imaged using a high-speed video camera. These observations support the hypothesis that the presence of an EM field will perturb the thermal decomposition pathway of HMX, and cause ignition to occur at a lower temperature than what is predicted under typical thermal conditions. This intense interaction results in electrically excited molecules that propagate the energy and surpass the activation barrier for ignition before the predicted ignition temperature of the bulk sample has been reached. Understanding the decomposition of energetic materials under the influence of EM energy is important to understand and predict material response under a variety of environmental conditions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Combustion and Flame - Volume 181, July 2017, Pages 16–21