کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
647174 | 1457169 | 2013 | 8 صفحه PDF | دانلود رایگان |

In this paper, inverse neural network (ANNi) is applied to optimization of operating conditions or parameters in energy processes. The proposed method ANNi is a new tool which inverts the artificial neural network (ANN), and it uses a Nelder-Mead optimization method to find the optimum parameter value (or unknown parameter) for a given required condition in the process. In order to accomplish the target, first, it is necessary to build the artificial neural network (ANN) that simulates the output parameters for a polygeneration process. In general, this class of ANN model is constituted of a feedforward network with one hidden layer to simulate output layer, considering well-known input parameters of the process. Normally, a Levenberg–Marquardt learning algorithm, hyperbolic tangent sigmoid transfer-function, linear transfer-function and several neurons in the hidden layer (due to the complexity of the process) are considered in the constructed model. After that, ANN model is inverted. With a required output value and some input parameters it is possible to calculate the unknown input parameter using the Nelder-Mead algorithm. ANNi results on three different applications in energy processes showed that ANNi is in good agreement with target and calculated input data. Consequently, ANNi is applied to determine the optimal parameters, and it already has applications in different processes with a very short elapsed time (seconds). Therefore, this methodology can be useful for the controlling of engineering processes.
► Solving optimization problem of polygeneration system by ANNi.
► The advantage of ANNi is simple in structure and faster in convergence.
► CPU time provided by ANNi is good enough, in order to control the process.
► Due to ANNi methodology, we could obtain any unknown input parameters on line.
► ANNi could help the decision makers for finding a set of “good solutions”.
Journal: Applied Thermal Engineering - Volume 50, Issue 2, February 2013, Pages 1399–1406