| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 6494154 | 1418335 | 2017 | 32 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Advanced water splitting for green hydrogen gas production through complete oxidation of starch by in vitro metabolic engineering
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی شیمی
													بیو مهندسی (مهندسی زیستی)
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												Starch is a natural energy storage compound and is hypothesized to be a high-energy density chemical compound or solar fuel. In contrast to industrial hydrolysis of starch to glucose, an alternative ATP-free phosphorylation of starch was designed to generate cost-effective glucose 6-phosphate by using five thermophilic enzymes (i.e., isoamylase, alpha-glucan phosphorylase, 4-α-glucanotransferase, phosphoglucomutase, and polyphosphate glucokinase). This enzymatic phosphorolysis is energetically advantageous because the energy of α-1,4-glycosidic bonds among anhydroglucose units is conserved in the form of phosphorylated glucose. Furthermore, we demonstrated an in vitro 17-thermophilic enzyme pathway that can convert all glucose units of starch, regardless of branched and linear contents, with water to hydrogen at a theoretic yield (i.e., 12 H2 per glucose), three times of the theoretical yield from dark microbial fermentation. The use of a biomimetic electron transport chain enabled to achieve a maximum volumetric productivity of 90.2 mmol of H2/L/h at 20 g/L starch. The complete oxidation of starch to hydrogen by this in vitro synthetic (enzymatic) biosystem suggests that starch as a natural solar fuel becomes a high-density hydrogen storage compound with a gravimetric density of more than 14% H2-based mass and an electricity density of more than 3000 W h/kg of starch.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Metabolic Engineering - Volume 44, November 2017, Pages 246-252
											Journal: Metabolic Engineering - Volume 44, November 2017, Pages 246-252
نویسندگان
												Jae-Eung Kim, Eui-Jin Kim, Hui Chen, Chang-Hao Wu, Michael W.W. Adams, Y.-H. Percival Zhang,