کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
6539389 1421098 2018 10 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
A multispectral machine vision system for invertebrate detection on green leaves
ترجمه فارسی عنوان
یک سیستم دید چندرسانه ای ماشین برای تشخیص دوران نوری در برگ های سبز
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
Detection and identification of invertebrate pests in farming fields is a prerequisite necessity for integrated pest management (IPM), however, current sensing technologies do not meet the requirements for IPM. Currently, farmers have to first sample pests and then manually count and identify them, in a way that is time-consuming, labour-intensive and error-prone. Machine vision technology has taken over part of the work in a more efficient and accurate manner. However, current machine vision systems (MVSs) have limitations in detecting pests on crops and the counting and identification are constrained in laboratories or pest traps, resulting in the exact time and locations of pests being unknown, hindering more proper decisions and efficient actions. In this study, we developed a multispectral MVS to detect common invertebrate pests on green leaves in natural environment. First, it was found that, besides visible light and near-infrared, the ultraviolet is a good indicator to distinguish green leaves from other materials. Then for multispectral or hyperspectral data processing, we proposed two models, one named normalised hypercube and another named hyper-hue, which are less affected by uneven illumination and can reflect data distribution, resulting in more accurate classification than the normal method of spectral angle mapper (SAM). Further, the relationship between spectral angle and the relative angle of hyper-hue was studied and it was found that usually, data of hyper-hue has larger inter-class distances which could contribute to better classification. At last, to solve the practical problems of image registration and real-time infield applications, instead of registering 2D images, the MVS created and registered 3D point clouds. In an experiment of detecting twelve types of common invertebrate pests on crops, the proposed MVS showed acceptable accuracy.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers and Electronics in Agriculture - Volume 150, July 2018, Pages 279-288
نویسندگان
, ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت