کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
658276 1458082 2013 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Numerical and experimental performance analysis of rotary desiccant wheels
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی جریان سیال و فرایندهای انتقال
پیش نمایش صفحه اول مقاله
Numerical and experimental performance analysis of rotary desiccant wheels
چکیده انگلیسی

In air-conditioning field, a dehumidification has become increasingly important for human health and comfort especially in hot and humid climates. However, a conventional mechanical dehumidification with a vapor compression refrigerator has some problems. Therefore, much attention has been paid recently to a desiccant air-conditioning system as an alternative to the conventional system. In this paper, we focus on a rotary desiccant wheel which is the main component of the desiccant air-conditioning system and develop and validate the mathematical model by comparison with experimental results. The validation is conducted under various operating conditions. The mathematical model discussed in this paper includes, for example, the entrance region effect in air channel, detailed diffusion phenomenon in porous solid. In experiments, effects of the regeneration air temperature, air superficial velocity, wheel thickness and wheel rotational speed on the desiccant wheel performance are investigated. In addition, the temperature and humidity distribution at the outlet of the desiccant wheel are measured. As a result, an average relative error between the predicted and the measured humidity ratio difference distribution is 3.3% and temperature difference distribution 10.8%. Moreover, the effect of the regeneration air inlet temperature, the air superficial velocity, wheel thickness and wheel rotational speed on the desiccant wheel performance are clarified and the predicted results are totally in good agreement with the measured results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Heat and Mass Transfer - Volume 60, May 2013, Pages 51–60
نویسندگان
, ,