کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
658845 1458124 2010 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The role of solid surface structure on dropwise phase change processes
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی جریان سیال و فرایندهای انتقال
پیش نمایش صفحه اول مقاله
The role of solid surface structure on dropwise phase change processes
چکیده انگلیسی

We compared the phase change behavior of a partially wetting fluid, nonane, on various SiO2 surfaces that had been modified to alter their roughness at the nanoscale. We compared a total of four surfaces: an as-received, smooth surface; a surface roughened by plasma-enhanced chemical vapor deposition (PECVD) of SiO2; and two surfaces where SiO2 nanorods had been deposited using glancing angle deposition (GLAD). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the surfaces. The topography of the rough surface controlled the wetting characteristics of the fluid that in turn, controlled the change-of-phase heat transfer rate. The measured apparent contact angle characterized the wetting property during the phase change process. Surface roughness promoted wetting in this system, but the direction of heat transfer controlled the topographic design required for enhanced performance. A comparison between two nanorod coatings of differing heights shows that the longer nanorod coating (30 nm high) acted somewhat like a porous surface promoting condensation heat transfer while the shorter nanorod coating (10 nm high) was much more effective at promoting evaporative heat transfer. Surface alteration at the scale over which intermolecular forces dominates the fluid-solid interaction provides a convenient means for probing those interactions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Heat and Mass Transfer - Volume 53, Issues 5–6, February 2010, Pages 910–922
نویسندگان
, , , , , ,