کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6593568 1423544 2018 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Direct numerical simulation of a high Ka CH4/air stratified premixed jet flame
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Direct numerical simulation of a high Ka CH4/air stratified premixed jet flame
چکیده انگلیسی
Direct numerical simulation (DNS) of a high Karlovitz number (Ka) CH4/air stratified premixed jet flame was performed and used to provide insights into fundamentals of turbulent stratified premixed flames and their modelling implications. The flame exhibits significant stratification where the central jet has an equivalence ratio of 0.4, which is surrounded by a pilot flame with an equivalence ratio of 0.9. A reduced chemical mechanism for CH4/air combustion based on GRI-Mech3.0 was used, including 268 elementary reactions and 28 transported species. Over five billion grid points were employed to adequately resolve the turbulence and flame scales. The maximum Ka of the flame in the domain approaches 1400, while the jet Damköhler number (Dajet) is as low as 0.0027. The flame shows early stages of CH4/air combustion in the near field and later stages in the far field; the separation of combustion stages can be largely attributed to the small jet flow timescale and the low Dajet. The gradient of equivalence ratio in the flame normal direction, dϕ/dn, is predominantly negative, and small-scale stratification was found to play an important role in determining the local flame structure. Notably, the flame is thinner, the burning is more intense, and the levels of the radical pools, including OH, O and H, are higher in regions with stronger mixture stratification. The local flame structure is more strained and less curved in these regions. The mean flame structure is considerably influenced by the strong shear, which can be reasonably predicted by unity Lewis number stratified premixed flamelets when the thermochemical conditions of the reactant and product are taken locally from the DNS and the strain rates close to those induced by the mean flow are used in the flamelet calculation. An enhanced secondary reaction zone behind the primary reaction zone was observed in the downstream region, where the temperature is high and the fuel concentration is negligible, consistent with the observed separation of combustion stages. The main reactions involved in the secondary reaction zone, including CO + OH⇔CO2 + H (R94), H + O2 + M⇔HO2 + M (R31), HO2 + OH⇔H2O + O2 (R82) and H2 + OH⇔H2O + H (R79), are related to accumulated intermediate species including CO, H2, H, and OH. The detailed mechanism of intermediate species accumulation was explored and its effect on chemical pathways and heat release rate was highlighted.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Combustion and Flame - Volume 193, July 2018, Pages 229-245
نویسندگان
, , , ,