کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
659850 1458117 2010 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Evaporation resistance measurement with visualization for sintered copper-powder evaporator in operating flat-plate heat pipes
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی جریان سیال و فرایندهای انتقال
پیش نمایش صفحه اول مقاله
Evaporation resistance measurement with visualization for sintered copper-powder evaporator in operating flat-plate heat pipes
چکیده انگلیسی

The evaporation resistances of loosely-sintered copper-powder evaporators were measured in operating flat-plate heat pipes. The evaporation processes was also visualized through a top glass plate. Irregular or spherical powders of different size distributions were investigated. Uniform heating of 16–170 W/cm2 was applied to the base plate near one end with a heated surface of 1.1 × 1.1 cm2. At the other end was a cooling water jacket. The evaporation performance was first examined with the effect of liquid flow resistance minimized, i.e., the copper powders covered only the heated area with the remaining region covered with sintered copper wire screens. Similar to multi-layer mesh wicks, quiescent surface evaporation without nucleate boiling was observed for all test conditions, in spite of the abundant nucleation sites. The water film receded and the evaporation resistance reduced with increasing heat flux. Once partial dryout occurred, the evaporation resistance re-rose. The minimum evaporation resistances were about 0.08–0.09 W cm2/K for wicks containing fine powders. These values are similar with those for multi-layer-mesh wicks having a fine bottom screen. In the absence of fine powders, the minimum evaporation resistances were significantly larger. In the second part for homogeneous sintered-powder wicks, the large flow resistance tended to retard the condensed water from returning to the evaporator. However, this can be compensated by a larger charge and/or a thicker wick.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Heat and Mass Transfer - Volume 53, Issues 19–20, September 2010, Pages 3792–3798
نویسندگان
, , ,