کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
660994 1458155 2007 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Subsonic compressible flow in two-sided lid-driven cavity. Part I: Equal walls temperatures
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی جریان سیال و فرایندهای انتقال
پیش نمایش صفحه اول مقاله
Subsonic compressible flow in two-sided lid-driven cavity. Part I: Equal walls temperatures
چکیده انگلیسی
This paper presents a numerical study of the laminar, viscous, subsonic compressible flow in a two-dimensional, two-sided, lid-driven cavity using a multi-domain spectral element method. The flow is driven by steadily moving two opposite walls vertically in opposite directions. All the bounding walls have equal temperatures. The results of the simulations are used to investigate the effects of the cavity aspect ratio, the Reynolds number and the Mach number on the flow. At lower Reynolds numbers, the flow pattern consists of two separate co-rotating vortices contiguous to the moving walls. For higher Reynolds numbers, initially a two-vortex flow is formed, which eventually turns into a single elliptical vortex occupying most of the cavity. For a higher aspect ratio, the flow patterns are dissimilar in that the streamlines become more and more elliptic. For aspect ratios as high as 2.5, at high Reynolds numbers, a three-vortex stage is formed. It is found that the compressibility effects are not very significant for Mach numbers less than 0.4. Dissipation of kinetic energy into internal energy changes the temperature field especially near the boundaries. Boundary layer studies suggest that the velocity and temperature boundary layer thicknesses are lower for higher Reynolds numbers. For engineering purposes, these thicknesses can be approximated by the existing flat-plate solutions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Heat and Mass Transfer - Volume 50, Issues 21–22, October 2007, Pages 4206-4218
نویسندگان
, , , ,