کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
667909 1458719 2016 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dual phase lag model-based thermal analysis of tissue phantoms using lattice Boltzmann method
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی جریان سیال و فرایندهای انتقال
پیش نمایش صفحه اول مقاله
Dual phase lag model-based thermal analysis of tissue phantoms using lattice Boltzmann method
چکیده انگلیسی
The present study is concerned with the development and application of Lattice Boltzmann method-based numerical scheme for investigating the thermal response of laser irradiated biological tissue phantom during laser-based photo-thermal therapy. The Lattice Boltzmann Method (LBM) has been employed for analyzing the transport of short-pulse radiation within the body of the tissue phantom that has been considered as the participating medium. In order to determine the two-dimensional temperature distribution inside the tissue medium, the transient form of radiative transfer equation (RTE) has been coupled with the energy equation modeled based on dual phase lag (DPL) heat conduction framework. The LBM-based solution of the coupled RTE and DPL-based numerical model has been benchmarked against the results available in the literature. Results have been presented in the form of two-dimensional temperature distributions, spatial and temporal profiles of temperatures within the body of the laser-irradiated biological tissue phantoms. Effects of phase lags associated with the heat flux (τq) and temperature gradients (τT) on the resultant temperature distributions inside the laser irradiated tissue phantom have also been analyzed and discussed. Thereafter, the temperature distribution inside the biological tissue phantom embedded with optical inhomogeneities has been determined using the DPL-based model. Results of the study clearly reveal the successful implementation of LBM-based numerical approach in analyzing the thermal response of laser-irradiated biological tissue phantoms. The inherent properties associated with non-Fourier heat conduction models have also been explicitly brought out in the context of photo-thermal therapy.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Thermal Sciences - Volume 103, May 2016, Pages 41-56
نویسندگان
, , , ,