کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6713998 1428734 2018 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Leaching and microstructural properties of lead contaminated kaolin stabilized by GGBS-MgO in semi-dynamic leaching tests
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی عمران و سازه
پیش نمایش صفحه اول مقاله
Leaching and microstructural properties of lead contaminated kaolin stabilized by GGBS-MgO in semi-dynamic leaching tests
چکیده انگلیسی
Ground granulated blast furnace slag (GGBS) is widely used to stabilize soils due to its environmental and economic merits. The strength and durability of reactive MgO activated GGBS (GGBS-MgO) stabilized lead (Pb)-contaminated soils have been explored by previous studies. However, the effects of simulated acid rain (SAR) on the leachability and micro-properties of GGBS-MgO stabilized Pb-contaminated soils are hardly investigated. This research studies the leachability and microstructural properties of GGBS-MgO stabilized Pb-contaminated kaolin clay exposed to SAR with initial pH values of 2.0, 4.0 and 7.0. A series of tests are performed including the semi-dynamic leaching tests using SAR as the extraction liquid, acid neutralization capacity (ANC), mercury intrusion porosimetry (MIP), and X-ray diffraction (XRD) tests. The results demonstrate that as the SAR pH decreases from 7.0 to 4.0, the Pb cumulative fraction leached (CFL) and observed diffusion coefficient (Dobs) increases significantly whereas the leachate pH decreases. Meanwhile, increasing the GGBS-MgO content from 12% to 18% results in the decrease of CFL and Dobs. Further decreasing the SAR pH to 2.0 results in the dissolution-controlled leaching mechanism regardless of the binder dosage. The differences in the leaching properties under different pH conditions are interpreted based on the cemented soil acid buffering capacity, hydration products and pore size distributions obtained from the ANC, MIP, and XRD tests, respectively.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Construction and Building Materials - Volume 172, 30 May 2018, Pages 626-634
نویسندگان
, , , , ,