کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6750001 | 1430632 | 2018 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Compressive strength prediction of environmentally friendly concrete using artificial neural networks
ترجمه فارسی عنوان
پیش بینی قدرت فشاری بتن محیطی با استفاده از شبکه های عصبی مصنوعی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
استحکام فشاری، بتن های جمع آوری شده بازیافت شده، شبکه های عصبی مصنوعی، بقایای ساختمانی،
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی عمران و سازه
چکیده انگلیسی
Solid waste in the form of construction debris is one of the major environmental concerns in the world. Over 20 million tons of construction waste materials are generated in Tehran each year. A large amount of these materials can be recycled and reused as recycled aggregate concrete (RAC) for general construction, pavement and a growing number of other works that drive the demand for RAC. This paper aims to predict RAC compressive strength by using Artificial Neural Network (ANN). The training and testing data for ANN model development were prepared using 139 existing sets of data derived from 14 published literature sources. The developed ANN model uses six input features namely water cement ratio, water absorption, fine aggregate, natural coarse aggregate, recycled coarse aggregate, water-total material ratio. The ANN is modelled in MATLAB and applied to predict the compressive strength of RAC given the foregoing input features. The results indicate that the ANN is an efficient model to be used as a tool in order to predict the compressive strength of RAC which is comprised of different types and sources of recycled aggregates.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Building Engineering - Volume 16, March 2018, Pages 213-219
Journal: Journal of Building Engineering - Volume 16, March 2018, Pages 213-219
نویسندگان
Hosein Naderpour, Amir Hossein Rafiean, Pouyan Fakharian,