| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 6758994 | 1431389 | 2018 | 15 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Neural networks for displacement analysis in an advanced gas cooled reactor core model
												
											ترجمه فارسی عنوان
													شبکه های عصبی برای تجزیه و تحلیل جابجایی در یک مدل هسته ای راکتور هسته ای پیشرفته با گاز خنک کننده 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی انرژی
													مهندسی انرژی و فناوری های برق
												
											چکیده انگلیسی
												This paper presents a Neural Network (NN) approach for displacement analysis with applications in modelling the seismic response of the UK's Advanced Gas Cooled Reactors (AGRs). A quarter sized physical model of a reactor core was developed at the University of Bristol to provide experimental validation to the existing numerical models that support the seismic resilience assessments of the AGRs. The physical model outputs include displacement and acceleration datasets of considerable size and complexity, collected for a range of seismic inputs and postulated component damage scenarios. Rich sets of displacement data were employed in training two NN models that can predict displacement at user-defined locations in the core physical model and can map the correlation between the component relative displacements. Understanding component displacements is particularly important, as such displacements may affect the channel shapes and can cause local and general distortion of the core. This paper presents the development, testing and performance of the NN models. The NNs yield predictions that compare well with the experimentally obtained parameters. As more experimental test data become available, the NN's prediction capability will benefit from accumulated training. In the future, the NNs will be incorporated into a multi-layered framework for dynamic response prediction and analysis.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Engineering and Design - Volume 332, June 2018, Pages 252-266
											Journal: Nuclear Engineering and Design - Volume 332, June 2018, Pages 252-266
نویسندگان
												Luiza Dihoru, Matt Dietz, Tony Horseman, Panos Kloukinas, Olafur Oddbjornsson, Elia Voyagaki, Adam J. Crewe, Colin A. Taylor, 
											