کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6760226 511694 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Prediction of hydrogen concentration in nuclear power plant containment under severe accidents using cascaded fuzzy neural networks
ترجمه فارسی عنوان
پیش بینی غلظت هیدروژن در مهار نیروگاه های هسته ای در حوادث شدید با استفاده از شبکه های عصبی فازی آبشار
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
چکیده انگلیسی
Recently, severe accidents in nuclear power plants (NPPs) have attracted worldwide interest since the Fukushima accident. If the hydrogen concentration in an NPP containment is increased above 4% in atmospheric pressure, hydrogen combustion will likely occur. Therefore, the hydrogen concentration must be kept below 4%. This study presents the prediction of hydrogen concentration using cascaded fuzzy neural network (CFNN). The CFNN model repeatedly applies FNN modules that are serially connected. The CFNN model was developed using data on severe accidents in NPPs. The data were obtained by numerically simulating the accident scenarios using the MAAP4 code for optimized power reactor 1000 (OPR1000) because real severe accident data cannot be obtained from actual NPP accidents. The root-mean-square error level predicted by the CFNN model is below approximately 5%. It was confirmed that the CFNN model could accurately predict the hydrogen concentration in the containment. If NPP operators can predict the hydrogen concentration in the containment using the CFNN model, this prediction can assist them in preventing a hydrogen explosion.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Engineering and Design - Volume 300, 15 April 2016, Pages 393-402
نویسندگان
, , , ,