کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6766226 | 512451 | 2016 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A novel online training neural network-based algorithm for wind speed estimation and adaptive control of PMSG wind turbine system for maximum power extraction
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, an adaptive control scheme for maximum power point tracking of stand-alone PMSG wind turbine systems (WTS) is presented. A novel procedure to estimate the wind speed is derived. To achieve this, a neural network identifier (NNI) is designed in order to approximate the mechanical torque of the WTS. With this information, the wind speed is calculated based on the optimal mechanical torque point. The NNI approximates in real-time the mechanical torque signal and it does not need off-line training to get its optimal parameter values. In this way, it can really approximates any mechanical torque value with good accuracy. In order to regulate the rotor speed to the optimal speed value, a block-backstepping controller is derived. Uniform asymptotic stability of the tracking error origin is proved using Lyapunov arguments. Numerical simulations and comparisons with a standard passivity based controller are made in order to show the good performance of the proposed adaptive scheme.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Renewable Energy - Volume 86, February 2016, Pages 38-48
Journal: Renewable Energy - Volume 86, February 2016, Pages 38-48
نویسندگان
Fernando Jaramillo-Lopez, Godpromesse Kenne, Francoise Lamnabhi-Lagarrigue,