کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
680266 | 1459968 | 2015 | 6 صفحه PDF | دانلود رایگان |
• The NOB community of four CANON reactors with high DO were studied.
• High FA concentration suppressed bioactivity of both Nitrobacter and Nitrospira.
• The introduction of organic material resulted in biodiversity decreasing of NOB.
• Strategy for suppressing NOB in CANON system with high DO was proposed.
In completely autotrophic nitrogen removal over nitrite (CANON) process, the bioactivity of nitrite-oxidizing bacteria (NOB) should be effectively inhibited. In this study, the stability of four high-rate CANON reactors and the effect of free ammonia (FA) and organic material on NOB community structure were investigated using DGGE. Results suggested that with the increasing of FA, the ratio of total nitrogen removal to nitrate production went up gradually, while the biodiversity of Nitrobacter-like NOB and Nitrospira-like NOB both decreased. When the CANON reactor was transformed to simultaneous partial nitrification, anammox and denitrification (SNAD) reactor by introducing organic material, the denitrifiers and aerobic heterotrophic bacteria would compete nitrite or oxygen with NOB, which then led to the biodiversity decreasing of both Nitrobacter-like NOB and Nitrospira-like NOB. The distribution of Nitrobacter-like NOB and Nitrospira-like NOB were evaluated, and finally effective strategies for suppressing NOB in CANON reactors were proposed.
Journal: Bioresource Technology - Volume 175, January 2015, Pages 189–194