کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6812922 | 545638 | 2016 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Dexmedetomidine protects against learning and memory impairments caused by electroconvulsive shock in depressed rats: Involvement of the NMDA receptor subunit 2B (NR2B)-ERK signaling pathway
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علم عصب شناسی
روانپزشکی بیولوژیکی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Cognitive impairment is a common adverse effect of electroconvulsive therapy (ECT) during treatment for severe depression. Dexmedetomidine (DEX), a sedative-anesthetic drug, is used to treat post-ECT agitation. However, it is not known if DEX can protect against ECT-induced cognitive impairments. To address this, we used chronic unpredictable mild stress (CUMS) to establish a model of depression for ECT treatment. Our Morris water maze and sucrose preference test results suggest that DEX alleviates ECT-induced learning and memory impairments without altering the antidepressant efficacy of ECT. To further investigate the underlying mechanisms of DEX, hippocampal expression of NR2B, p-ERK/ERK, p-CREB/CREB, and BDNF were quantified by western blotting. These results show that DEX suppresses over-activation of NR2B and enhances phosphorylation of ERK1/2 in the hippocampus of ECT-treated depressed rats. Furthermore, DEX had no significant effect on ECT-induced increases in p-CREB and BDNF. Overall, our findings suggest that DEX ameliorates ECT-induced learning and memory impairments in depressed rats via the NR2B-ERK signaling cascade. Moreover, CREB/BDNF seems not appear to participate in the cognitive protective mechanisms of DEX during ECT treatment.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Psychiatry Research - Volume 243, 30 September 2016, Pages 446-452
Journal: Psychiatry Research - Volume 243, 30 September 2016, Pages 446-452
نویسندگان
Xin Gao, Fu-Zhi Zhuang, Shou-Jun Qin, Li Zhou, Yun Wang, Qing-Feng Shen, Mei Li, Michelle Villarreal, Lauren Benefield, Shu-Ling Gu, Teng-Fei Ma,