کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
683373 | 888999 | 2009 | 6 صفحه PDF | دانلود رایگان |

The novel exopolysaccharide bioflocculant HBF-3 is produced by Halomonas sp. V3a′, which is a mutant strain of the deep-sea bacterium Halomonas sp. V3a. Response surface methodology (RSM) was employed to optimize the production medium for increasing HBF-3 production. Using a Plackett–Burman experimental design to aid in the first step of optimization, edible glucose, MgSO4·7H2O, and NH4Cl were found to be significant factors affecting HBF-3 production. To determine the optimal concentration of each significant variable, a central composite design was employed. Based on response surface and canonical analysis, the optimum concentrations of the critical components were obtained as follows: edible glucose, 16.14 g/l; MgSO4·7H2O, 2.73 g/l; and NH4Cl, 1.97 g/l. HBF-3 production obtained by using the optimized medium was 4.52 g/l, which was in close agreement with the predicted value of 4.55 g/l. By scaling up fermentation from flask to fermenter, HBF-3 production was further increased to 5.58 g/l.
Journal: Bioresource Technology - Volume 100, Issue 23, December 2009, Pages 5922–5927