کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6854201 | 1437407 | 2018 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An optimum multi-level image thresholding segmentation using non-local means 2D histogram and exponential Kbest gravitational search algorithm
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Multi-level image thresholding segmentation divides an image into multiple non-overlapping regions. This paper presents a novel two-dimensional (2D) histogram-based segmentation method to improve the efficiency of multi-level image thresholding segmentation. In the proposed method, a new non-local means 2D histogram and a novel variant of gravitational search algorithm (exponential Kbest gravitational search algorithm) have been used to find the optimal thresholds. Further, for the optimization, a 2D Rényi entropy has been redefined for multi-level thresholding. The proposed method has been tested on the Berkeley Segmentation Dataset and Benchmark (BSDS300) in terms of both subjective and objective assessments. The experimental results affirm that the proposed method outperforms the other 2D histogram-based image thresholding segmentation methods on majority of performance parameters.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 71, May 2018, Pages 226-235
Journal: Engineering Applications of Artificial Intelligence - Volume 71, May 2018, Pages 226-235
نویسندگان
Himanshu Mittal, Mukesh Saraswat,