کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6856271 | 1437952 | 2018 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
GCOTraj: A storage approach for historical trajectory data sets using grid cells ordering
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Vast amounts of trajectory data have been collected due to the popularity of GPS devices. Analyzing this wealth of data is important, thus highlighting the need to efficiently index and store this large amount of data on secondary storage to allow for efficient retrieval. Existing approaches index trajectories based on data partitioning index structures such as R-trees or space partitioning index structures such as quad-trees. R-tree like data structures, when used for indexing trajectories, result in large overlapping minimum bounding boxes and are therefore inefficient for the indexing and storage of large trajectory data sets. Existing approaches based on space partitioning do not allow the tradeoff of time versus space constraints in a way that is sensitive to query patterns. This paper proposes a new indexing and storage approach called GCOTraj, which partitions a large spatio-temporal data space into multi-dimensional grid cells and orders these grid cells in two different ways, first via traditional space filling curves which are not sensitive to query patterns; and second, via the Graph-Based Ordering approach (GBO) which is a state-of-the-art workload-based ordering technique for multidimensional data. GCOTraj clusters and stores trajectories to secondary storage based on the ordering produced by ordering algorithms. A good ordering will result in less disk seeks when retrieving disk blocks to answer a query. In addition, GCOTraj uses an index to spot the targeted data on disk and reduce the redundant data retrieved therefore reducing disk IO. Extensive experiments suggest that GCOTraj outperforms the state-of-the-art trajectory storage scheme TrajStore by a factor of up to 16.07 in IO time to answer range queries.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 459, August 2018, Pages 1-19
Journal: Information Sciences - Volume 459, August 2018, Pages 1-19
نویسندگان
Shengxun Yang, Zhen He, Yi-Ping Phoebe Chen,