| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 6856424 | 1437956 | 2018 | 43 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Chernoff information between Gaussian trees
												
											ترجمه فارسی عنوان
													اطلاعات چرنوف درختان گاوسی 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی کامپیوتر
													هوش مصنوعی
												
											چکیده انگلیسی
												In this paper, we deal with Gaussian graphical classifiaction problem. We aim to provide a systematic study of the relationship between Chernoff information and topological, as well as algebraic properties of the corresponding Gaussian graphs for the underlying graphical testing problems. We first show the relationship between Chernoff information and generalized eigenvalues of the associated covariance matrices. It is then proved that Chernoff information between two Gaussian trees sharing certain local subtree structures can be transformed into that of two smaller trees. In this way, we provide a sequence of equivalent Gaussian tree pairs in terms of Chernoff Information. Under our proposed grafting operations, bottleneck Gaussian trees, namely, Gaussian trees connected by one such operation, can thus be simplified into two 3-node Gaussian trees. Thereafter, we provide a thorough study about how Chernoff information changes when small differences are accumulated into bigger ones via concatenated grafting operations, as well as partial ordering. In the end, we propose an optimal linear dimension reduction method based on generalized eigenvalues for the purpose of classification, which is proved to achieve maximum Chernoff information among all linear transformations.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 453, July 2018, Pages 442-462
											Journal: Information Sciences - Volume 453, July 2018, Pages 442-462
نویسندگان
												Binglin Li, Shuangqing Wei, Yue Wang, Jian Yuan, 
											