کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6856601 1437967 2018 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
RECOME: A new density-based clustering algorithm using relative KNN kernel density
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
RECOME: A new density-based clustering algorithm using relative KNN kernel density
چکیده انگلیسی
Discovering clusters from a dataset with different shapes, densities, and scales is a known challenging problem in data clustering. In this paper, we propose the RElative COre MErge (RECOME) clustering algorithm. The core of RECOME is a novel density measure, i.e., Relative K nearest Neighbor Kernel Density (RNKD). RECOME identifies core objects with unit RNKD, and partitions non-core objects into atom clusters by successively following higher-density neighbor relations toward core objects. Core objects and their corresponding atom clusters are then merged through α-reachable paths on a KNN graph. We discover that the number of clusters computed by RECOME is a step function of the α parameter with jump discontinuity on a small collection of values. A fast jump discontinuity discovery (FJDD) method is proposed based on graph theory. RECOME is evaluated on both synthetic datasets and real datasets. Experimental results indicate that RECOME is able to discover clusters with different shapes, densities, and scales. It outperforms six baseline methods on both synthetic datasets and real datasets. Moreover, FJDD is shown to be effective to extract the jump discontinuity set of parameter α for all tested datasets, which can ease the task of data exploration and parameter tuning.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volumes 436–437, April 2018, Pages 13-30
نویسندگان
, , , , , ,