کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6856610 1437967 2018 42 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Automatic design of hyper-heuristic based on reinforcement learning
ترجمه فارسی عنوان
طراحی اتوماتیک فوق العاده اکتشافی بر اساس یادگیری تقویتی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Hyper-heuristic is a class of methodologies which automates the process of selecting or generating a set of heuristics to solve various optimization problems. A traditional hyper-heuristic model achieves this through a high-level heuristic that consists of two key components, namely a heuristic selection method and a move acceptance method. The effectiveness of the high-level heuristic is highly problem dependent due to the landscape properties of different problems. Most of the current hyper-heuristic models formulate a high-level heuristic by matching different combinations of components manually. This article proposes a method to automatically design the high-level heuristic of a hyper-heuristic model by utilizing a reinforcement learning technique. More specifically, Q-learning is applied to guide the hyper-heuristic model in selecting the proper components during different stages of the optimization process. The proposed method is evaluated comprehensively using benchmark instances from six problem domains in the Hyper-heuristic Flexible Framework. The experimental results show that the proposed method is comparable with most of the top-performing hyper-heuristic models in the current literature.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volumes 436–437, April 2018, Pages 89-107
نویسندگان
, , ,