کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6856627 | 1437967 | 2018 | 34 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Effective lossless condensed representation and discovery of spatial co-location patterns
ترجمه فارسی عنوان
نمایش مضر مؤثر و کشف الگوهای مکان همپوشانی مکانی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
A spatial co-location pattern is a set of spatial features frequently co-occuring in nearby geographic spaces. Similar to closed frequent itemset mining, closed co-location pattern (CCP) mining was proposed for losslessly condensing large collections of prevalent co-location patterns. However, the state-of-the-art condensation methods in mining CCP are inspired by closed frequent itemset mining and do not consider the intrinsic characteristics of spatial co-locations, e.g., the participation index and ratio in spatial feature interactions, thus causing serious containment issues in CCP mining. In this paper, we propose a novel lossless condensed representation of prevalent co-location patterns, Super Participation Index-closed (SPI-closed) co-location. An efficient SPI-closed Miner is also proposed to effectively capture the nature of spatial co-location patterns, alongside the development of three additional pruning strategies to make the SPI-closed Miner efficient. This method captures richer feature interactions in spatial co-locations and solves the containment issues in existing CCP methods. A performance evaluation conducted on both synthetic and real-life data sets shows that SPI-closed Miner reduces the number of CCPs by up to 50%, and runs much faster than the baseline CCP mining algorithm described in the literature.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volumes 436â437, April 2018, Pages 197-213
Journal: Information Sciences - Volumes 436â437, April 2018, Pages 197-213
نویسندگان
Lizhen Wang, Xuguang Bao, Hongmei Chen, Longbing Cao,